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5.1 Solutions about Ordinary Point

Review of Power Series

Recall from that a power series in x – a has the form

Such a series is said to be a power series centered at

a. 
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Convergence 

exists.

Interval of Convergence

The set of all real numbers for which the series 

converges.

Radius of Convergence

If R is the radius of convergence, the power series 

converges for |x – a| < R and 

diverges for |x – a| > R. 
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Absolute Convergence

Within its interval of convergence, a power series 

converges absolutely. That is, the following 

converges.

Ratio Test

Suppose cn  0 for all n, and 

If L < 1, this series converges absolutely, if L > 1, this 

series diverges, if L = 1, the test is inclusive.
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A Power Defines a Function

Suppose 

then

Identity Property

If all cn = 0, then the series = 0.
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Analytic at a Point

A function f is analytic at a point a, if it can be 

represented by a power series in x – a with a positive 

radius of convergence. For example:
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Arithmetic of Power Series

Power series can be combined through the operations 

of addition, multiplication and division.
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Example 1 Adding Two Power Series

Write                                                 as one power series.

Solution:

Since

we let k = n – 2 for the first series and k = n + 1 for the 

second series, 
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Example 1 (2)

then we can get the right-hand side as 

(3)

We now obtain
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